Giải Toán 7 trang 87 Kết nối tri thức với cuộc sống tập 1
Hướng dẫn giải Toán 7 trang 87 Kết nối tri thức với cuộc sống tập 1.
Nội dung bài viết (chọn nhanh)
Giải bài 4.33, 4.34, 4.35, 4.36, 4.37, 4.38, 4.39 trang 87 SGK Toán lớp 7 kết nối tri thức tập 1. Bài 4.33. Tính các số đo x, y trong tam giác dưới đây (H.4.75)
Bài 4.33 trang 87 SGK Toán 7 tập 1 – Kết nối tri thức
Tính các số đo x, y trong tam giác dưới đây (H.4.75)
Phương pháp:
Áp dụng tổng 3 góc của 1 tam giác bằng 180 độ.
Lời giải:
Áp dụng định lí tổng ba góc trong tam giác,
+) Ta có:
\(\begin{array}{l}x + x + {20^o} + x + {10^o} = {180^o}\\ \Rightarrow 3x = {150^o}\\ \Rightarrow x = {50^o}\end{array}\)
+) Ta có:
\(\begin{array}{l}y + {60^o} + 2y = {180^o}\\ \Rightarrow 3y = {120^o}\\ \Rightarrow y = {40^o}\end{array}\)
Bài 4.34 trang 87 SGK Toán 7 tập 1 – Kết nối tri thức
Trong Hình 4.76, có AM = BM, AN = BN. Chứng minh rằng\(\widehat {MAN} = \widehat {MBN}\).
Phương pháp:
Chứng minh 2 tam giác MNA và MNB bằng nhau từ đó suy ra 2 góc tương ứng bằng nhau.
Lời giải:
Xét hai tam giác MAN và MBN có:
AM = BM (theo giả thiết).
MN chung.
AN = BN (theo giả thiết).
Do đó ΔMAN=ΔMBN”>ΔMAN=ΔMBNΔMAN=ΔMBN (c – c – c).
Vậy (2 góc tương ứng).
Bài 4.35 trang 87 SGK Toán 7 tập 1 – Kết nối tri thức
Trong Hình 4.77, có AO = BO,\(\widehat {OAM} = \widehat {OBN}\). Chứng minh rằng AM = BN.
Phương pháp:
Chứng minh 2 tam giác OAM và OBN bằng nhau từ đó suy ra AM=BN.
Lời giải:
Xét hai tam giác OAM và OBN có:
(theo giả thiết).
AO = BO (theo giả thiết).
Do đó ΔOAM=ΔOBN”>ΔOAM=ΔOBN (g – c – g).
Vậy AM = BN (2 cạnh tương ứng).
Bài 4.36 trang 87 SGK Toán 7 tập 1 – Kết nối tri thức
Trong Hình 4.78, ta có AN = BM,\(\widehat {BAN} = \widehat {ABM}\). Chứng minh rằng\(\widehat {BAM} = \widehat {ABN}\).
Phương pháp:
Chứng minh 2 tam giác ANB và BMA bằng nhau từ đó suy ra \(\widehat {BAM} = \widehat {ABN}\).
Lời giải:
Bài 4.37 trang 87 SGK Toán 7 tập 1 – Kết nối tri thức
Cho M, N là hai điểm phân biệt nằm trên đường trung trực của đoạn thẳng AB sao cho AM = AN. Theo em, tứ giác AMBN là hình gì?
Phương pháp:
Chứng minh 4 cạnh của tứ giác bằng nhau.
Lời giải:
Do M nằm trên đường trung trực của đoạn thẳng AB nên MA = MB.
Do N nằm trên đường trung trực của đoạn thẳng AB nên NA = NB.
Mà AM = AN nên MA = MB = NA = NB.
Tứ giác AMBN có MA = MB = NA = NB nên tứ giác AMBN là hình thoi.
Vậy tứ giác AMBN là hình thoi.
Bài 4.38 trang 87 SGK Toán 7 tập 1 – Kết nối tri thức
Cho tam giác ABC cân tại A có \(\widehat {A{\rm{ }}} = 120^\circ \). Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC. Chứng minh rằng:
a) \(\Delta \)BAM = \(\Delta \)CAN;
b) Các tam giác ANB, AMC lần lượt cân tại N, M.
Phương pháp:
a) Chứng minh 2 tam giác bằng nhau theo trường hợp g-c-g
b) Chứng minh tam giác có 2 cạnh bằng nhau hoặc 2 góc bằng nhau
Lời giải:
a) Xét 2 tam giác vuông BAM và CAN có:
AB=AC(Do tam giác ABC cân tại A)
\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)
=>\(\Delta BAM = \Delta CAN\)(g.c.g)
b)
Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:
\(\widehat B = \widehat C = \frac{{{{180}^o} – {{120}^o}}}{2} = {30^o}\).
Xét tam giác ABM vuông tại A có:
\(\begin{array}{l}\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} – \widehat {AMB} = {180^o} – {60^o} = {120^o}\end{array}\)
Xét tam giác MAC có:
\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)
\(\Rightarrow \) Tam giác AMC cân tại M.
Vì \(\Delta BAM = \Delta CAN\)=>BM=CN => BN=MC
Xét 2 tam giác ANB và AMC có:
AB=AC
\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))
BN=MC
=>\(\Delta ANB = \Delta AMC\)(c.c.c)
Mà tam giác AMC cân tại M.
=> Tam giác ANB cân tại N.
Bài 4.39 trang 87 SGK Toán 7 tập 1 – Kết nối tri thức
Cho tam giác ABC vuông tại A có B = 60°. Trên cạnh BC lấy điểm M sao cho \(\widehat {CAM} = {30^o}\). Chứng minh rằng:
a) Tam giác CAM cân tại M;
b) Tam giác BAM là tam giác đều;
c) M là trung điểm của đoạn thẳng BC.
Phương pháp:
a) Dùng tính chất tổng 3 góc trong 1 tam giác bằng 180 độ suy ra góc A bằng góc C.
b) Chứng minh tam giác ABM cân có 1 góc bằng 60 độ
c) Dùng tính chất tổng 3 góc trong 1 tam giác bằng 180 độ để tính số đo 3 góc từ đó suy ra tam giác đều
Lời giải:
a) Xét tam giác ABC có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^o}\\ = > {90^o} + {60^o} + \widehat C = {180^o}\\ = > \widehat C = {30^o}\end{array}\)
Xét tam giác CAM có \(\widehat A = \widehat C = {30^o}\)
=>Tam giác CAM cân tại M.
b) Xét tam giác ABM có:
\(\begin{array}{l}\widehat C + \widehat {CMA} + \widehat {CAM} = {180^o}\\ = > {30^o} + \widehat {CMA} + {30^o} = {180^o}\\ = > \widehat {CMA} = {120^o}\\ = > \widehat {BMA} = {180^o} – \widehat {CMA} = {180^o} – {120^o} = {60^o}\end{array}\)
Xét tam giác ABM có:
\(\begin{array}{l}\widehat B + \widehat {BMA} + \widehat {BAM} = {180^o}\\ = > {60^o} + {60^o} + \widehat {BAM} = {180^o}\\ = > \widehat {BAM} = {60^o}\end{array}\)
Do \(\widehat {BAM} = \widehat {BMA} = \widehat {ABM} = {60^o}\) nên tam giác ABM đều.
Hanoi1000.vn
Giải Toán 7 trang 87 Kết nối tri thức với cuộc sống tập 1
Đăng bởi: Hanoi1000.vn
Chuyên mục: Giải bài tập