Câu 98 trang 151 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 1
Hướng dẫn giải Câu 98 trang 151 Sách Bài Tập (SBT) Toán lớp 7 tập 1.
Chứng minh rằng tam giác ABC là tam giác cân.
Tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A. Chứng minh rằng tam giác ABC là tam giác cân.
Giải
Kẻ \(MH \bot AB,MK \bot AC\)
Xét hai tam giác vuông AHM và AKM, ta có:
\(\eqalign{
& \widehat {AHM} = \widehat {AKM} = 90^\circ \cr
& \widehat {HAM} = \widehat {K{\rm{A}}M\left( {gt} \right)} \cr} \)
AM cạnh huyền chung
\( \Rightarrow \) ∆AHM = ∆AKM (cạnh huyền, góc nhọn)
Suy ra: MH = MK (hai cạnh tương ứng)
Xét hai tam giác vuông MHB và MKC, ta có:
\(\widehat {MHB} = \widehat {MKC} = 90^\circ \)
MH = MK (chứng minh trên)
MB = MC (gt)
Suy ra: ∆MHB = ∆MKC (cạnh huyền, cạnh góc vuông)
Suy ra: \(\widehat B = \widehat C\) (hai góc tương ứng)
Vậy ∆ABC cân tại A.
Hanoi1000.vn
Xem lời giải SGK – Toán 7 – Xem ngay
Câu 98 trang 151 Sách Bài Tập (SBT) Toán lớp 7 tập 1
Đăng bởi: Hanoi1000.vn
Chuyên mục: Giải bài tập