Giải bài tậpLớp 7

Câu 96 trang 151 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 1

Hướng dẫn giải Câu 96 trang 151 Sách Bài Tập (SBT) Toán lớp 7 tập 1.

Chứng minh rằng AI là tia phân giác của góc A.

Cho tam giác ABC cân tại A. Các đường trung trực của AB, AC cắt nhau ở I. Chứng minh rằng AI là tia phân giác của góc A.

Giải

Giả sử IM, IN là hai đường trung trực của AB, AC.

Ta có:

\(\eqalign{
& AB{\rm{ }} = {\rm{ }}AC\left( {gt} \right){\rm{ }}\left( 1 \right); \cr
& {\rm{ }}AM{\rm{ }} = {1 \over 2}AB\left( {gt} \right)\left( 2 \right); \cr
& AN = {1 \over 2}AC\left( {gt} \right)\left( 3 \right) \cr} \)

Từ (1), (2) và (3) suy ra: AM = AN

Xét hai tam giác vuông AMI và ANI, ta có:

             \(\widehat {AMI} = \widehat {ANI} = 90^\circ \)

             AM = AN (chứng minh trên)

             AI cạnh huyền chung 

Suy ra: ∆AMI = ∆ANI (cạnh huyền, cạnh góc vuông)

Suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng)

Vậy AI là tia phân giác của \(\widehat {BAC}\).

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 96 trang 151 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button