Giải bài tậpLớp 7

Câu 86 trang 53 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 2

Hướng dẫn giải Câu 86 trang 53 Sách Bài Tập (SBT) Toán lớp 7 tập 2.

Chứng minh.

Cho hình sau trong đó G là trọng tâm của tam giác ABC. Chứng minh rằng:

a) \({S_{AGC}} = 2{{\rm{S}}_{GMC}}\)

b) \({S_{GMB}} = {S_{GMC}}\)

c) \({S_{AGB}} = {S_{AGC}} = {S_{BGC}}\)

Giải

a) G là trọng tâm của ∆ABC

\( \Rightarrow \) GA = 2GM (tính chất đường trung tuyến)

∆AGC và ∆GMC có chung đường cao kẻ từ đỉnh C đến AM.

Cạnh đáy GA = 2GM

Chiều cao chung của hai tam giác

Suy ra: \({S_{AGC}} = 2{{\rm{S}}_{GMC}}\)      (1)

b) ∆GMB và ∆GMC có cạnh đáy MB = MC, chung chiều cao kẻ từ đỉnh G đến cạnh BC

\({S_{GMB}} = {S_{GMC}}\)                                  (2)

c) Hai tam giác AGB và GMB có chung chiều cao kẻ từ đỉnh B đến cạnh AM.

AG = 2GM (chứng minh trên)

Suy ra:

\(\eqalign{
& {S_{AGB}} = 2{{\rm{S}}_{GMB}}\left( 3 \right) \cr
& {S_{BGC}} = {S_{GMB}} + {S_{GMC}} = 2{S_{GMB}}\left( 4 \right) \cr} \)

Từ (1), (2) và (3) suy ra: \({{\rm{S}}_{AGC}} = {S_{AGB}} = {S_{BGC}}\)

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 86 trang 53 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button