Giải bài tậpLớp 7

Câu 74 trang 51 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 2

Hướng dẫn giải Câu 74 trang 51 Sách Bài Tập (SBT) Toán lớp 7 tập 2.

Tìm trực tâm của tam giác ABC, AHB, AHC.

Cho tam giác ABC vuông tại A, đường cao AH. Tìm trực tâm của tam giác ABC, AHB, AHC.

Giải

∆ABC có \(\widehat {BAC} = 90^\circ \)

CA là đường cao xuất phát từ đỉnh C. BA là đường cao xuất phát từ đỉnh B. Giao điểm của hai đường này là A. Vậy A là trực tâm của ∆ABC.

∆AHB có \(\widehat {AHB} = 90^\circ \)

AH là đường cao xuất phát từ đỉnh A; BH là là đường cao xuất phát từ đỉnh B. Giao điểm của hai đường này là H. Vậy H là trực tâm của ∆AHB

∆AHC có \(\widehat {AHC} = 90^\circ \)

AH là đường cao xuất phát từ đỉnh A; CH là đường cao xuất phát từ đỉnh C. Giao điểm của hai đường này là H

Vậy H là trực tâm của ∆AHC.

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 74 trang 51 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button