Giải bài tậpLớp 6

Câu 6.5, 6.6, 6.7, 6.8 trang 16,17 Sách Giải Bài Tập (SBT) Toán lớp 6 tập 2

So sánh.

Câu 6.5 trang 16 Sách Bài Tập (SBT) Toán lớp 6 tập 2

a) Cho phân số \({a \over b}\) (a, b ∈ N, b # 0)

 Giả sử  \({a \over b} > 1\) và m ∈ N, m # 0. Chứng tỏ rằng:

\({a \over b} < {{a + m} \over {b + m}}\)  

b) Áp dụng kết quả ở câu a) để so sánh \({{434} \over {561}}\) và \({{441} \over {568}}\) 

Giải

a) \({a \over b} = {{a(b + m)} \over {b(b + m)}} = {{ab + am} \over {{b^2} + bm}}\)                           (1)

\({{a + m} \over {b + m}} = {{b(a + m)} \over {b(b + m)}} = {{ab + bm} \over {{b^2} + bm}}\)               (2)

\({a \over b} < 1\) => a < b suy ra ab + am < ab + bm          (3)

Từ (1), (2) và (3) ta có: \({a \over b} < {{a + m} \over {b + m}}\) 

b) Áp dụng: Rõ ràng \({{434} \over {561}} < 1\) nên \({{434} \over {561}} < {{434 + 7} \over {561 + 7}} = {{441} \over {568}}\) 

Câu 6.6 trang 17 Sách Bài Tập (SBT) Toán lớp 6 tập 2

a) Cho phân số \({a \over b}\)  (a, b ∈ N, b # 0)

Giả sử \({a \over b} > 1\) và m ∈ N, m # 0. Chứng tỏ rằng

\({a \over b} > {{a + m} \over {b + m}}\)    

b) Áp dụng kết quả ở câu a) để so sánh \({{237} \over {142}}\) và \({{237} \over {142}}\) 

Giải

a) Giải tương tự bài 6.5 a)

b)  \({{237} \over {142}} > 1\) nên \({{237} \over {142}} < {{237 + 9} \over {142 + 9}} = {{246} \over {151}}\) 

Câu 6.7 trang 17 Sách Bài Tập (SBT) Toán lớp 6 tập 2

So sánh: \(A = {{{{17}^{18}} + 1} \over {{{17}^{19}} + 1}}\) và \(B = {{{{17}^{17}} + 1} \over {{{17}^{18}} + 1}}\)

Giải

\(A = {{{{17}^{18}} + 1} \over {{{17}^{19}} + 1}} < 1 \Rightarrow A = {{{{17}^{18}} + 1} \over {{{17}^{19}} + 1}} < {{{{17}^{18}} + 1 + 16} \over {{{17}^{19}} + 1 + 16}} = {{{{17}^{18}} + 17} \over {{{17}^{19}} + 17}}\) 

\({{17.({{17}^{17}} + 1)} \over {17.({{17}^{18}} + 1)}} = {{{{17}^{17}} + 1} \over {{{17}^{18}} + 1}} = B\)                 

Vậy A < B

Câu 6.8 trang 17 Sách Bài Tập (SBT) Toán lớp 6 tập 2

So sánh: \(C = {{{{98}^{99}} + 1} \over {{{98}^{89}} + 1}}\) và \(D = {{{{98}^{98}} + 1} \over {{{98}^{88}} + 1}}\) 

Giải

\(C = {{{{98}^{99}} + 1} \over {{{98}^{89}} + 1}} > 1 \Rightarrow C = {{{{98}^{99}} + 1} \over {{{98}^{89}} + 1}} > {{{{98}^{99}} + 1 + 97} \over {{{98}^{89}} + 1 + 97}} = {{{{98}^{99}} + 198} \over {{{98}^{89}} + 98}}\) 

\({{98.({{98}^{98}} + 1)} \over {98.({{98}^{88}} + 1)}} = {{{{98}^{98}} + 1} \over {{{98}^{88}} + 1}} = D\)                                 

 Hanoi1000.vn

Xem lời giải SGK – Toán 6 – Xem ngay

Câu 6.5, 6.6, 6.7, 6.8 trang 16,17 Sách Bài Tập (SBT) Toán lớp 6 tập 2

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button