Giải bài tậpLớp 7

Câu 57 trang 47 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 2

Hướng dẫn giải Câu 57 trang 47 Sách Bài Tập (SBT) Toán lớp 7 tập 2.

Chứng minh rằng:
a) MA < MB

Đường trung trực d của đoạn thẳng AB chia mặt phẳng thành hai phần I và II như hình sau. Cho điểm M thuộc phần I và điểm N thuộc phần II. Chứng minh rằng:

a) MA < MB

b) NA > NB

Giải

a) Nối MA, MB. Gọi C là giao điểm của MB với đường thẳng d, nối CA.

Ta có:  MB = MC + CB

Mà CA = CB (tính chất đường trung trực)

Suy ra: MB = MC + CA       (1)

Trong ∆ MAC ta có:

MA < MC + CA (bất đẳng thức tam giác)          (2)

Từ (1) và (2) suy ra:  MA < MB

b) Nối NA, NB. Gọi D là giao điểm của NA với đường thẳng d, nối DB.

Ta có: NA = ND  + DB

Mà: DA = DB (tính chất đường trung trực)

Suy ra:  NA =  ND + DB                                             (3)

Trong ∆NDB ta có:

NB < ND  + DB (bất đẳng thức tam giác)        (4)

Từ (3) và (4) suy ra:  NA > NB 

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 57 trang 47 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button