Giải bài tậpLớp 7

Câu 55 trang 145 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 1

Hướng dẫn giải Câu 55 trang 145 Sách Bài Tập (SBT) Toán lớp 7 tập 1.

Chứng minh rằng DB = DC, AB = AC.

Cho tam giác ABC có \(\widehat B = \widehat C\). Tia phân giác góc A cắt BC tại D. Chứng minh rằng DB = DC, AB = AC.

Giải

Trong ∆ADB, ta có:

\(\widehat B + \widehat {{A_1}} + \widehat {{D_1}} = 180^\circ \) (tổng ba góc trong tam giác)

Suy ra: \(\widehat {{D_1}} = 180^\circ  – \left( {\widehat B + \widehat {{A_1}}} \right)\)                          (1)

Trong ∆ADC, ta có:

\(\widehat C + \widehat {{D_2}} + \widehat {{A_2}} = 180^\circ \) (tổng ba góc trong tam giác)

Suy ra: \(\widehat {{D_2}} = 180^\circ  – \left( {\widehat C + \widehat {{A_2}}} \right)\)                          (2)

\(\widehat B = \widehat C\left( {gt} \right)\); \(\widehat {{A_1}} = \widehat {{A_2}}\left( {gt} \right)\)   (3)

Từ (1), (2) và (3) suy ra: \(\widehat {{D_1}} = \widehat {{D_2}}\)

Xét ∆ADB và ∆ADC, ta có:

             \(\widehat {{A_1}} = \widehat {{A_2}}\)

              AD cạnh chung

             \(\widehat {{D_1}} = \widehat {{D_2}}\) (chứng minh trên)

Suy ra: ∆ADB = ∆ADC(g.c.g)

Vậy: AB = AC (2 cạnh tương ứng)

         DB = DC (2 cạnh tương ứng)

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 55 trang 145 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button