Giải bài tậpLớp 7

Câu 54 trang 144 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 1

Hướng dẫn giải Câu 54 trang 144 Sách Bài Tập (SBT) Toán lớp 7 tập 1.

a) Chứng minh rằng BE = CD.

Cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE.

a) Chứng minh rằng  BE = CD.

b) Gọi O là giao điểm của BE  và CD. Chứng minh rằng ∆BOD = ∆COE

Giải

a) Xét ∆BEA và ∆CDA, ta có:

BA = CA (gt)

Xem thêm:  Câu 22 trang 40 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 2

\(\widehat A\) chung

AE = AD (gt)

Suy ra: ∆BEA = ∆CDA (c.g.c)

Vậy BE = CD (hai cạnh tương ứng)

b) ∆BEA = ∆CDA (chứng minh trên)

\(\Rightarrow \widehat {{B_1}} = \widehat {{C_1}};\widehat {{E_1}} = \widehat {{D_1}}\) (hai góc tương ứng)

\(\widehat {{E_1}} + \widehat {{E_2}} = 180^\circ \) (hai góc kề bù)

\(\widehat {{D_1}} + \widehat {{D_2}} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {{E_2}} = \widehat {{D_2}}\)

             AB = AC (gt)

\( \Rightarrow \) AE + EC  =  AD + DB mà AE = AD (gt) => EC = DB

Xét ∆ODB và ∆OEC, ta có:

\(\widehat {{D_2}} = \widehat {{E_2}}\) (chứng minh trên)

DB = EC (chứng minh trên)

\(\widehat {{B_1}} = \widehat {{C_1}}\) (chứng minh trên)

Suy ra: ∆ODB = ∆OEC (g.c.g)

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 54 trang 144 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button