Giải bài tậpLớp 7

Câu 46 trang 46 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 2

Hướng dẫn giải Câu 46 trang 46 Sách Bài Tập (SBT) Toán lớp 7 tập 2.

Hãy tìm một điểm sao cho khoảng cách từ điểm đó đến mỗi đoạn thẳng AB, BC, CA là bằng nhau, đồng thời khoảng cách này là ngắn nhất.

Cho tam giác ABC. Hãy tìm một điểm sao cho khoảng cách từ điểm đó đến mỗi đoạn thẳng AB, BC, CA là bằng nhau, đồng thời khoảng cách này là ngắn nhất.

Giải

Nếu O là điểm nằm trong ∆ABC

Kẻ \(OH \bot AB,OK \bot BC,OI \bot {\rm{A}}C\)

Vì điểm O cách đều các đường thẳng AB, BC, CA.

\( \Rightarrow \) OH = OK = OI

OH = OK \( \Rightarrow \) O nằm trên tia phân giác \(\widehat {ABC}\)

OI = OK \( \Rightarrow \) O nằm trên tia phân giác \(\widehat {ACB}\)

 Vậy O là giao điểm các đường phân giác của  ∆ABC.

Nếu O’ nằm ngoài ∆ABC

Kẻ \(O’D \bot AB,O’E \bot BC,O’F \bot {\rm{AC}}\)

\( \Rightarrow \) O’D = O’E = O’F

O’D = O’F \( \Rightarrow \) O nằm trên tia phân giác \(\widehat {BAC}\)

O’D = O’E \( \Rightarrow \) O’ nằm trên tia phân giác \(\widehat {DBC}\)

\( \Rightarrow \) O’ là giao điểm phân giác trong của \(\widehat {BAC}\) và phân giác ngoài tại đỉnh B và C. nên A, O, O’ thẳng; A, H, D thẳng hàng.

Ta có:  OH < O’D

Vậy O là  giao điểm các đường phân giác trong của ∆ABC cách đều ba đường thẳng AB, BC, CA và khoảng cách này là ngắn nhất.

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 46 trang 46 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button