Giải bài tậpLớp 7

Câu 43 trang 45 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 2

Hướng dẫn giải Câu 43 trang 45 Sách Bài Tập (SBT) Toán lớp 7 tập 2.

Tìm tập hợp các điểm cách đều hai đường thẳng AB và CD.

Cho hai đường thẳng AB và CD cắt nhau tại O. Tìm tập hợp các điểm cách đều hai đường thẳng AB và CD.

Giải

Xét \(M\) nằm trong góc AOC và cách đều OA và OC.

Kẻ \(MH \bot OA,MK \bot {\rm{O}}C\) nên MH = MK

Xét hai tam giác vuông MHO và MKO:

               \(\widehat {MHO} = \widehat {MK{\rm{O}}} = 90^\circ \)

               MH = MK

               OM cạnh huyền chung  

Do đó ∆MHO = ∆MKO (cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat {MOH} = \widehat {MOK}\) (2 góc tương ứng)

=>OM là tia phân giác của \(\widehat {AOC}\)

Ngược lại, M nằm trên tia phân giác của \(\widehat {AOC}\)

Xét hai tam giác vuông MHO và MKO:

                 \(\widehat {MHO} = \widehat {MK{\rm{O}}} = 90^\circ \)

                 \(\widehat {MOH} = \widehat {MOK}\)

                 OM cạnh huyền chung  

Do đó ∆MHO = ∆MKO (cạnh huyền – góc nhọn)

\( \Rightarrow \) MH = MK (2 cạnh tương ứng)

Vậy tập hợp các điểm M cách đều OA và OC là tia phân giác Ox của góc AOC.

Tương tự M nằm trong các góc AOD, DOB, BOC tập hợp các điểm M là tia phân giác Oy, Ox’, Oy’.

Vậy tập hợp các điểm M cách đều hai đường thẳng AB và CD cắt nhau tại O là hai đường thẳng xx’ và yy’ là đường phân giác của các góc tạo bởi hai đường thẳng AB và CD.

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 43 trang 45 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button