Giải bài tậpLớp 7

Câu 30 trang 41 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 2

Hướng dẫn giải Câu 30 trang 41 Sách Bài Tập (SBT) Toán lớp 7 tập 2.

Chứng minh.

Cho tam giác ABC. Gọi M là trung điểm của BC.

Chứng minh rằng \(AM < {{AB + AC} \over 2}\)

Giải

Trên tia đối của tia MA lấy điểm D sao cho MA = MD

Xét ∆AMB và ∆DMC:

                MA = MD (theo cách vẽ)

                \(\widehat {AMB} = \widehat {DMC}\) (đối đỉnh)

                MB = MC (gt)

Do đó: ∆AMB = ∆DMC (c.g.c)

\( \Rightarrow \) AB = DC (hai cạnh tương ứng)

Trong ∆ACD ta có:

AD < AC + CD (bất đẳng thức tam giác)

Mà AD = AM + MD = 2AM

      CD = AB

\(2{\rm{A}}M < AC + AB \Rightarrow AM < {{AB + AC} \over 2}\)

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 30 trang 41 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button