Giải bài tậpLớp 7

Câu 12.1; 12.2; 12.3; 12.4; 12.5; 12.6 trang 32 Sách Bài Tập SBT Toán lớp 7 tập 1

Hướng dẫn giải Câu 12.1; 12.2; 12.3; 12.4; 12.5; 12.6 trang 32 Sách Bài Tập SBT Toán lớp 7 tập 1.

Điền dấu x vào ô thích hợp trong bảng sau:

Câu 12.1 trang 32 Sách Bài Tập SBT Toán lớp 7 tập 1

Điền dấu x vào ô thích hợp trong bảng sau:

Câu

Đúng

Sai

a) a là số vô tỉ thì a cũng là số thực

 

 

b) a là căn bậc hai của một số tự nhiên thì a là số vô tỉ

 

 

c) a là số thực thì a là số vô tỉ

 

 

d) a là số hữu tỉ thì a không phải là số vô tỉ

 

 

Giải

a) Đúng;                    b) Sai;                         c) Sai;                         d) Đúng.

Câu 12.2 trang 32 Sách Bài Tập SBT Toán lớp 7 tập 1

Tìm khẳng định đúng trong các khẳng định sau:

(A) Tổng của hai số vô tỉ là một số vô tỉ.

(B) Tích của hai số vô tỉ là một số vô tỉ.

(C) Tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ.

(D) Thương của hai số vô tỉ là một số vô tỉ.

Giải

Chọn (C) Tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ.

Câu 12.3 trang 32 Sách Bài Tập SBT Toán lớp 7 tập 1

Thương của một số vô tỉ và một số hữu tỉ là một số vô tỉ hay số hữu tỉ?

Giải

Gọi a là số vô tỉ, b là số hữu tỉ.

Ta có \({a \over b}\) là số vô tỉ vì nếu \({a \over b}\) = b’ là số hữu tỉ thì a = b . b’ suy ra a là số hữu tỉ, trái với giả thiết a là số vô tỉ.

Câu 12.4 trang 32 Sách Bài Tập SBT Toán lớp 7 tập 1

Tích của một số vô tỉ và một số hữu tỉ là một số vô tỉ hay hữu tỉ?

Giải

Gọi a là số vô tỉ, b là số hữu tỉ khác 0.

Tích ab là số vô tỉ vì nếu ab = b’ là số hữu tỉ thì a = \({{b’} \over b}\) suy ra a là số hữu tỉ, vô lí.

Câu 12.5 trang 32 Sách Bài Tập SBT Toán lớp 7 tập 1

Cho x > y > 0. Chứng minh rằng x3 > y3.

Giải

Từ x > y > 0 ta có:

\(x > y \Rightarrow xy > {y^2}\)                                         (1)

\(x > y \Rightarrow {x^2} > xy\)                     (2)

Từ (1) và (2) suy ra x2 > y2.

\({x^2} > {y^2} \Rightarrow {x^3} > x{y^2}\)                                    (3)

\(x > y \Rightarrow x{y^2} > {y^3}\)                                         (4)

Từ (3) và (4) suy ra x3 > y3.

Câu 12.6 trang 32 Sách Bài Tập SBT Toán lớp 7 tập 1

Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì \(\sqrt a\) là số vô tỉ.

Giải

Giả sử \(\sqrt a\) là số hữu tỉ thì \(\sqrt a\) viết được thành \(\sqrt a  = {m \over n}\) với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên \({m \over n}\) không phải là số tự nhiên, do đó n > 1.

Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1.

Vậy \(\sqrt a\) là số vô tỉ.

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 12.1; 12.2; 12.3; 12.4; 12.5; 12.6 trang 32 Sách Bài Tập SBT Toán lớp 7 tập 1

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button