Giải bài tậpLớp 7

Câu 103 trang 152 Sách Giải Bài Tập (SBT) Toán lớp 7 tập 1

Hướng dẫn giải Câu 103 trang 152 Sách Bài Tập (SBT) Toán lớp 7 tập 1.

Chứng minh rằng CD là đường trung trực của AB.

Cho đoạn thẳng AB. Vẽ các cung tâm A và B có cùng bán kính sao cho chúng cắt nhau tại C và D. Chứng minh rằng CD là đường trung trực của AB.

Giải

Gọi H là giao điểm của AB và CD

Nối AC, AD, BC, BD

Xét ∆ACD và ∆BCD, ta có:

AC = BC (bán kính hai cung tròn bằng nhau)

AD = BD (bán kính hai cung tròn bằng nhau)

CD cạnh chung

Suy ra ∆ACD = ∆BCD (c.c.c)

Suy ra: \(\widehat {{C_1}} = \widehat {{C_2}}\) (hai góc tương ứng)

Xét hai tam giác AHC và BHC, ta có:

                 AC = BC (bán kính hai cung tròn bằng nhau)

                 \(\widehat {{C_1}} = \widehat {{C_2}}\) (chứng minh trên)

                 CH cạnh chung

Suy ra: ∆AHC = ∆BHC (c.g.c)

Suy ra: AH = BH (hai cạnh tương ứng)                   (1)

Ta có: \(\widehat {{H_1}} = \widehat {{H_2}}\) (hai cạnh tương ứng)

             \(\widehat {{H_1}} + \widehat {{H_2}} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {{H_1}} = \widehat {{H_2}} = 90^\circ  \Rightarrow C{\rm{D}} \bot AB\)                          (2)

Từ (1) và (2) suy ra CD là đường trung trực của AB.

Hanoi1000.vn

Xem lời giải SGK – Toán 7 – Xem ngay

Câu 103 trang 152 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Đăng bởi: Hanoi1000.vn

Chuyên mục: Giải bài tập

Rate this post

Hanoi1000

Là một người sống hơn 30 năm ở Hà Nội. Blog được tạo ra để chia sẻ đến mọi người tất cả mọi thứ về Hà Nội. Hy vọng blog sẽ được nhiều bạn đọc đón nhận.

Related Articles

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button